Ravi Teja Mullapudi

I am a second year Ph.D student working with Kayvon Fatahalian at CMU. I am broadly interested in building systems that enable understanding and analyzing visual data efficiently at scale.

I did my Masters at Indian Institute of Science, where I was advised by Uday Bondhugula. Before my masters I worked at NVIDIA and did my bachelors at IIIT Hyderabad.

Email  /  CV  /  Google Scholar  

Automatic scheduling of Halide programs

The Halide image processing language has proven to be an effective system for authoring high-performance image processing code. Halide programmers need only provide a high-level strategy for mapping an image processing pipeline to a parallel machine (a schedule), and the Halide compiler carries out the mechanical task of generating platform-specific code that implements the schedule. Unfortunately, designing high-performance schedules for complex image processing pipelines requires substantial knowledge of modern hardware architecture and code-optimization techniques. In this paper we provide an algorithm for automatically generating high-performance schedules for Halide programs. Our solution extends the function bounds analysis already present in the Halide compiler to automatically perform locality and parallelism-enhancing global program transformations typical of those employed by expert Halide developers. The algorithm does not require costly (and often impractical) auto-tuning, and, in seconds, generates schedules for a broad set of image processing benchmarks that are performance-competitive with, and often better than, schedules manually authored by expert Halide developers on server and mobile CPUs, as well as GPUs.

Automatically Scheduling Halide Image Processing Pipelines
Ravi Teja Mullapudi, Andrew Adams, Dillon Sharlet, Jonathan Ragan-Kelley, Kayvon Fatahalian

Automatic Optimization for Image Processing Pipelines

Image processing pipelines are ubiquitous and demand high-performance implementations on modern architectures. Manually implementing high performance pipelines is tedious, error prone and not portable. For my masters thesis, I focused on the problem of automatically generating efficient multi-core implementations of image processing pipelines from a high-level description of the pipeline algorithm. I leveraged polyhedral representation and code generation techniques to achieve this goal. PolyMage is a domain-specific system built for evaluating and experimenting with techniques developed during the course of my masters.

PolyMage: Automatic Optimization for Image Processing Pipelines
Ravi Teja Mullapudi, Vinay Vasista, Uday Bondhugula
Architectural Support for Programming Languages and Operating Systems (ASPLOS), 2015

Compiling Affine Loop Nests for Dataflow Runtimes

Designed and evaluated a compiler and runtime to automatically extract coarse-grained dataflow parallelism in affine loop nests to target shared and distributed memory systems. As part of the evaluation, we implemented a set of benchmarks using the CnC (Intel Concurrent Collections) programming model to serve as a comparision to our system. Implementation of the Floyd-Warshall All-Pairs-Shortest-Paths algorithm used in the evaluation is now part of Intel CnC samples.

website template stolen from here